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Transverse plasma waves and their instability. Part 2 

By F. D. KAHN 
Department of Astronomy, University of Manchester 

(Received 7 October 1963) 

A dispersion relation is set up for transverse waves in a plasma with an ellipsoidal 
velocity distribution. It is shown that the most unstable wave has its wave- 
normal parallel to the shortest axis of the ellipsoid and its vector potential paral- 
lel or anti-parallel to the longest axis. The maximum possible amplification rate 
is then calculated. Ellipsoidal velocity distributions arise in any flow with an 
anisotropic pressure tensor. If  the resulting instability leads to a microscopic 
redistribution of particle velocities, then the effective transport coefficients of the 
plasma are changed. In  particular it is shown that the effective viscosity is 
decreased, and becomes dependent on the local gradient of the macroscopic 
velocity. 

1. Introduction 
It was shown previously (Kahn 1962, here referred to as I) that plasmas, 

with a wide variety of anisotropic velocity distributions, can often be unstable 
to transverse waves. The calculations of I and of the present paper apply to 
uniform plasmas which are not subject to any externally imposed electric or 
magnetic fields. 

One is likely to meet anisotropic velocity distributions in a variety of fluid 
dynamical situations, for example in a shear flow, or in a one- or two-dimensional 
compressive or expansive flow. The anisotropy is such that the velocity distribu- 
tion of the charged particles becomes locally ellipsoidal, provided only the 
effective mean free path remains small enough. In  an ordinary gas the anisotropy 
would tend to be removed by inter-particle collisions, and one can use this know- 
ledge to compute the appropriate coefficient of viscosity, and so on. But it may 
well happen that these collisions are not effective enough. Transverse instabilities 
then become excited, and they will now determine how rapidly the anisotropy 
in the velocity distribution will be removed. Arguing thus one can revise the 
value of the coefficient of viscosity to allow for collective plasma effects. The 
revised coefficient depends on the local velocity gradient. 

Here we shall consider transverse waves in plasmas with an ellipsoidal velocity 
distribution. At first the direction of their wave vector is allowed to be arbitrary. 
Next it will be shown that both the unstable wave with the greatest wave- 
number, and the one with the largest amplification rate, usually have their wave- 
normal parallel to the shortest axis of the velocity ellipsoid. Finally, these results 
are used to estimate revised values of the coefficient of viscosity for a plasma in a 
shear or a compressive flow. 
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2. The dispersion relation for an arbitrary wave vector 
In  this calculation one can either take co-ordinate axes parallel to the principal 

axes of the velocity ellipsoid and have the wave vector direction arbitrary, or 
else let the velocity ellipsoid have an arbitrary orientation and let the wave 
vector be parallel to Ox. We choose the latter alternative, and adopt the distribu- 
tion function 

$(u, V ,  W )  = A4@(Au2 + B v ~  + Cw2 + ~ F V W  + BGWU + B H u v ) ~  (1)  

for the undisturbed plasma, where 
A H G  

A =  H B F .  10 F c l  
The symbols @ and $ are used for the distribution function to save confusion 

with the element F and its co-factor f in the determinant A. The normalization 
condition on q5 is that 

1 = ///Im (p(u, v ,  w )  dudvdw 

= A*///:-m Qdudvdw. 

Let this relation be transformed to the principal axes Ou'v'w' of the ellipsoid, 
whose equation then becomes 

u'2 v'2 w'2 
- + - + - = const. = Q2 say, 
u2 p 2  y2 

(3) 

where the axes are labelled so that u2 < p2 < y2. Then A* = (@y)-l, since A is 
invariant with respect to orientation. The normalization condition (2) now takes 
the form 

E 4aIOa @ ( Q 2 )  Q2dQ. 

Let us also define 

We recall from paper I, equation (81, the definition 
d u  a 

rs ... q5(u,v,w)dvdw, 

with some slight changes in notation, and we shall work out expressions for 11, 
I,, Iw, I,,, IVw and I-, which occur in the dispersion relation, all evaluated at 

t From now on, if the function (D has the argument A u ~  + . . . + 2Fvw + . . ., then we shall 
simply write CD. When the argument is different it will be given explicitly. The same applies 
to the functions a', Y and Y. 

14-2 
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q = 0. It was shown in I that for a centrally symmetrical velocity distribution 
I, and I, are pure imaginary on the imaginary axis, and therefore at q = 0, while 
the other I-functions mentioned are real there. Until further notice the phase 
velocities of all the I-functions considered here will be q = 0. Then we have that 

But 

I ~ = A & / / / ~  - (Au + Hv + Gw) 0' dudvdw. 
-m U 

= ( H u  + Bv + Fw)  0' dudvdw, ( 7 )  

and similarly 0 = //Irn (Gu + Fv + Cw) 0' dudvdw. (8) 
--m U 

With the help of ( 7 )  and (8), and after a little algebra, (6) becomes 

where a is the co-factor of A in the determinant A. ( A  similar definition will be 
adopted for the symbols b, c, f ,  g and h to be used later.) Referred to the principal 
axes of the velocity ellipsoid, and then expressed in terms of Q,  the integral in (9) 
becomes 

and (9) then gives I, = -v ,A/a.  

Next I,, being pure imaginary, is given by 

I, = T i  [k/jm v&u, v ,  w )  dvdw 
-m 

= B n i A ~ / / ~ m  v(Hv + Gw) 0'(.Bv2 + BFvw + Cw2) dvdw. (11)  

To calculate I,, we notice that after integrating by part,s with respect to v,  and 
expressing the resultant integrand in terms of Q,  

2 ~ 4  J J ~ v(Bv + F w )  0'(Bv2+ BFvw + Cw2) dvdw 
-m 

= -Ah//m 0(Bvz+2Fv~u+Cw2)dvdw 
-m 

Ah, 
a* Baa 

- - @((&2)QdQ = --l, 

while 2 A & / I m  v(Fv + Cw) a' (Bv2 + 2Fvw + Cw2) dvdw 
-03 

a 
-m aw 

= V -  0(Bv2+2Pvw+Cw2)dvdw = 0. 

(12) 

(13) 
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Wit,h the help of (12) and (13), and again after some algebra, one obtains 

I, = (in-h/2ag)Abl, (14) 

and similarly, 11, = (ing/2ag) Abl .  (15) 

It remains to calculate I,,, Ivw and Iww. This has to be done by a slightly round- 
about method. We note that 

where we define Y' z a, provided only that the function Y tends to a finite 
limit as its argument tends to + co. Similarly 

GI,,+ FIu,+CIuw = 0. (17) 

But 

and it now follows from (16) and (1  7) that 

I,, = h/a and Iuw = giu. 

To find I,,, Ivw and Iu9w observe that 

HI,,+BI,, +Fie,.,, 

by analogy with (6) and (9). The normalization condition, applied to (19), yields 

HIut, + BI,, + F&,, = - A/.. 

GI,, + PI,,, + CI,, = 0. 

(20) 

(21) 

Further, by the usual method of integration by parts, it can be shown that 

After inserting the value for Iuv from equation ( 1 8 ) ,  (20) and (21) can be solved 
to give 

I,, = - CA/a2 + h2/a2 and IVu, = FA/a2 4 hg/a2, (22,33) 

and by analogy with ( 2 2 )  
Iu,, = - BA/a2 + g2/u2. 

According to I, equation (27 ) ,  the dispersion relation reads 

A2 + A(& + $,?J + - 4: = 0 ( 2 5 )  



214 3'. D. Kahn 

where h = lc2/k$+ 1, k$ = 4nNe2/mc2, & = IrS- IrIs/Il, and where r and s can 
stand for w or w. With the relations ( l o ) ,  (la), (15), (22), (23), and (24) we now 
find after some simplification that 

and 

Relations (26) and (27) can be expressed more conveniently, by considering 
the determinant 

a h 9  
6 =  h b f ,  (28) L f c l  

whose elements are co-factors of the elements in A, and which has the value A2. 
The co-factor of b in 6 is ac-g2 = BA; 

similarly ab-h2 = CA. 

Thus @ + A 2  = a f b + ~ e ) - ( B + C ) A ,  (29) 

4v + 9- = - a-2{a(b + c )  - ( 2  - p )  (h2+ g"}, (30) 

where p = n2u2,/4u,. 
It is convenient to orient the v and w axes so as to make the co-factor f vanish. 

This can be done since we know, from I, that the dispersion relation is invariant 
with respect to a rotation of the co-ordinate axes about the direction of the wave 
vector. Then (27) becomes 

and we can re-write 

4v 3- - 4; = a-3[ ( 2  - p)  A% + (p  - 1 ) aA A] 

= w 3 [ ( 2  -p )  (abc - hg2 - ch2) + (p  - 1 )  abc] 

= C I - ~ [ U ~ C - ( ~ - ~ )  (bg'+ch')], (31) 

and the dispersion relation (25 )  may be written 

D(h) z h2-hu-2[a(b+c)-(2-p)  (h2+g2)]  

+ u - ~ [ u ~ c -  (2-p)  (b02+ch2)] = 0.  (32 

3. The largest unstable wave-number and the maximum amplification 
rate 
The discussion in this section applies only to velocity distributions for which 

p does not exceed 2 .  This is somewhat restrictive, in that an absolute upper limit 
is found, by Schwartz's inequality, to be given by 

p = n 2 ~ ~ / 4 v , ,  < n2/4 + 2.47;  

but it may be possible to extend the proof to include all values of p up to in2. 
For the present we note that an ellipsoidal Gaussian distribution has 

( D ( Q 2 )  = (2n)-ge-+Qe 
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and here v ~ / v o  = 2/n, so that p = in < 8. This case is covered in the present 
treatment. 

Let the axes be labelled so that a < b < c ;  then we see at  once, from (32), that 

D(c/u) = ( 3  -/I) (C - b )  @/a3 2 0 (33) 

and that D'(c/a) = (c-b)/a+(2-p)(h2+g2)/az 2 0. (34) 

Thus neither root of the quadratic equation D ( h )  = 0 can exceed c/a. The largest 
value of c/aoccurs when thexyz-axes are the principal axes of the velocity ellipsoid. 
and then it equals y2/a2. In  that case (33) also becomes an equality. Hence the 
largest h is 

Amax = kgBx/k i  + 1 = Y~/CC' 

and so kmax = (ko/a) (7' - a')'* (35) 

This largest value of the wave-number occurs for a disturbance of zero phase 
velocity; the corresponding wave vector is parallel to the shortest axis of the 
ellipsoid (the cc-axis) and the vector potential of the transverse wave is polarized 
parallel to the longest axis (the y-axis). 

We go on to find the most unstable wave and the corresponding instability 
rate for a plasma with a slightly ellipsoidal velocity distribution. The word 
slightly means, strictly, that the quantities A-B, B-C, F ,  G and H are all of order 
€ A .  

Now an ellipsoidal velocity distribution produces real values of k2 on the 
imaginary axis of the complex phase-velocity plane. Close to the origin we have, 
to first order, that 

where the phase velocity q = [+iq, and A and A' are the values of h and dh/dq  
at q = 0. Since h is real on the imaginary axis, A' is pure imagimry. If  we split up 

k2 E kg(h - 1) + @(A - 1 + iA'q), (36) 

The amplification rate corresponding to a given h is kq, and is largest when 

k2q2 = k$[(A - 1 j 7 2  - (~W8,  r31 

7 = rmax = iw - 1 ) / ( ~ V E ) o .  

(38) 

reaches its maximum, or when 

(39) 

We shall see that (ah,/a[), is positive, so that (38) gives a positive value for qmax 
when A > 1. Further A - 1 is of order E when the velocity distribution is only 
slightly anisotropic. Thus (ah,/a[), is only required correct to the zeroth order, 
if q is to be found t o  the first order in E ;  this means that it is good enough to find 
(aA,/ae), for the nearest isotropic plasma. If  the velocity distribution of the given 
plasma is $ = A*@, then the nearest isotropic plasma has a distribution function 

&, = A * @ D ( A ~ ( ~  + v2 + w2)t> 

for which h = -I,, 
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and 

= 2772iA*~om @ ( Q 2 )  QdQ = &iv,nA*, 

with the help of definition ( 5 ) .  Hence 

and the corresponding amplification rate is 
qmax = +(A- l) /(n/2) VIA’, 

4ko (A-1)S 
a m a x  = kmaxrmax ___ ~ 

3n. 34 u,AQ 

We have seen that the largest possible A = y2/m2 and that A = (a2B2y2)-1; 

hence the maximum possible amplification rate for the given plasma becomes 

= (8.24137~. 3 8 ) k , g ~ 7 ~ & ,  (42) 

where e = (y -a) /a ,  and r~ = (a&)*. The most unstable wave has the same 
wave-normal and sense of polarization as the wave with the largest wave-number. 

This calculation applies to transverse instabilities in an electron plasma with 
an immobile background charge. But with minor changes it can be adapted to 
the case of a plasma which is unstable because the ion distribution is ellipsoidal 
and in which the electrons have an isotropic velocity distribution. Then the largest 
wave-number is given by 

k = ko(A - 1)4 (m,/m,)&, 

where mJm, is the ratio of the mass of the electron to that of the proton. Equa- 
tion (38) becomes now 

k2q2 = hi[ (mJm,) (A - 1) q2 - (aA,/a[) q3].  

amax max + (8.24/3n. 34) k, de)u;l [(m,/m,) dP)]8, 

(43) 

(44) 

If we follow through the calculation as before we find now that 

where de) is the velocity dispersion among the electrons and E(p) describes the 
anisotropy of the distribution function of the proton velocities. 

Now ellipsoidal velocity distributions can occur in plasma flows where the 
density and temperature are uniform. If the density and/or the temperature 
vary from point to point then there is a further contribution present in the dis- 
tribution function, of the form 

where the e indicates that this contribution is of the same order as the ellipticity 
of the functions we have discussed so far. The new term is centrally anti-sym- 
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metrical; one readily verifies that at  zero phase velocity it makes imaginary con- 
tributions of order e to .Il) Ivu, I,, and I-, and real contributions of the same order 
to I,, and Iw. 

But in a plasma with an ellipsoidal velocity distribution the wave of largest 
wave-number has its wave-normal along the shortest axis of the velocity ellipsoid. 
Taking coordinates axes parallel to the principal axes we have 

.& = It,t, = y2/a2 and &w = I,,, = P2/a2, 

while 17,, = 0 and Iv = I ,  = 0. If  corrections are needed to allow for the effect 
of the centrally anti-symmetrical contribution, then 4,, and 9- become, 
respectively, (y2/a2) + iek,,, and (P2/a2) + iekurw, correct to the first order in e,  
where kkVt ,  and iek7, are the contributions made to Ivv and Iw by the anti- 
symmetrical part. 

The new value for h becomes 
h = (y2/a2) + iek,, 

h = (y2 /a2)  + i ~ k , ,  + A'[ = ( ~ ~ l i ~ ~ )  + i[sk,, + -&,TA*[]. 

q = c = - 2 ~ 1 c , , / ~ ~ ~ A *  

(46) 

(47) 

at q = 0. At the neighbouring real phase velocity q = c 

In  the presence of the anti-symmetrical component the location of the phase 
velocity where h = y2/a2 is shifted to 

(48) 
on the real axis near q = 0. The calculation of the most unstable wave-number and 
of the corresponding amplification rate can be carried out as before. The only effect 
of the centrally anti-symmetrical part is therefore to give a small real part to the 
phase velocity of the most unstable mode. 

4. Transverse instabilities in a fluid flow 
We now consider a typical steady flow in an electron plasma in which the 

density p ( r ) ,  the systematic velocity U ( r )  and the r.m.s. thermal velocity a(r) 
all depend on the position r. Let the frame of reference be so chosen that 
IU(r)l < a(r) in the region of interest. Suppose first that individual electron 
velocities are randomized only by a process which allows them to persist for a 
period with expectation value T. Let this process be such as to re-establish 
a locally isotropic velocity distribution. Then if n(r, u) d r d u  is the number of 
electrons in the volume d r d u  of six-space, the Boltzmann equation becomes 

(u .V)n=-  [ -@ P ( ' ' - -~12]-n] .  ~ 

7 w m 3  

The solution of this equation is 
(49) 

correct to the first order in r. To the same accuracy one can express the solution 
in the form 

+an anti-symmetrical contribution of order r. (51) 
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Only the centrally symmetrical part dS) of n is of interest in a calculation of 
the instability rate, and we have 

1"). n(s)=-a(l p U.(I+7VU)-U ~ 

mc3 

again correct to order 7,  where I is the unit dyadic. Axes can be chosen so that 
at any desired point, say the origin, the tensor I + 7VU takes the form 

Here U ,  V and W are the components of the velocity vector U and wl, w p  and 
w3 the components of the vorticity w. With this choice of co-ordinate axes we 
can write (52) in the form 

+linear terms in u, w, w + term independent of u, w, w , (54) 

correct to the first order in 7.  The quadratic terms in u, w and w fix the ellipsoidal 
nature of the velocity distribution; the remaining terms only serve to fix the local 
mean velocity. Purely rotational contributions to the tensor I + 7VU thus have 
no influence on the ellipticity of the velocity distribution. In  fact the distribution 
is ellipsoidal if and only if aU/ax, a V/ay and a W/az are not all equal. This is also 
the necessary and sufficient condition that the pressure tensor shall be anisotropic, 
so that viscous effects may arise in the fluid. In fact, whenever we expect viscous 
effects in a fluid we can also expect transverse instabilities in the corresponding 
plasma. 

Let the X, y and z-axes be chosen SO that aU/ax B a V p y  2 a W p .  It follows 
from (54) that the velocity ellipsoid then has principal axes in the ratio 

1 

1 - 7 a u/ax: 1 - 7 a viay: 1 - a wlaz = a:p: y .  

kma, = k0(y2/d - i)+ = k0p7(au/ax - a w/az)]* 

(55) 

(56 )  

The largest unstable wave-number becomes 

and the maximum instability rate becomes 

The instability may be expected to occur if the relaxation time 7 much exceeds 
m;&, the e-folding time of the most unstable wave. A further condition must be 
imposed because we are here trying to apply to a non-uniform medium some re- 
suits originally derived for a uniform plasma. Physically this seems to be reason- 
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able as long as the gradients of p,  LT and U are small enough. A typical electron 
should not, during a period w;;, be able to travel from a given point in the 
medium to another where p, LT or U is significantly different. This implies, for 
example, that one needs 

or 

(58)  

(59) 

in order that the change in local mean velocity may be small compared with the 
typical thermal velocity. 

Once excited, the instability will tend to reduce the time of free flight of the 
electrons below what one would estimate if one allowed only for the randomizing 
effect of collisions. In  fact one surmises that the amplitude of the resultant dis- 
turbance becomes such that w&& .I. r, or 

and the effective time of free flight becomes 

One can now calculate the effective coefficient of viscosity p corresponding to 
this 7. One possible definition (see, for example, Prandtl & Tietjens, 1934) is in 
terms of the pressure tensor P, by the equation 

-p[VU + (VU)' - $I div U] = P - FI, 

F = +(Pm + Pzlu +P,,), 

pzz = p r y  1 - 27 a upx)  

(61) 
where (VU)' is the transpose of VU, I is as before the unit dyadic, and 

the mean pressure. In  the present case it follows from (54) that 

and so on for pgU,  pzz,  and that 
p =p+(l-QrdivU). 

On equating xx-components of (61) and using (60) one finds that 

On substituting k: = 47rNe2/mc2, and putting v1 = (2/7r)* for a Gaussian dis- 
tribution, one then derives from (63) that 

where e2/mc2 = re is the classical radius of the electron. This form of ,u is obviously 
different in nature from that for an ordinary gas. Two notable points are that p 
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is now proportional to p8, and that it is dependent on the local state of motion of 
the medium. Clearly other transport coefficients, such as the thermaland electrical 
conductivities, will be changed in a similar way. 

5. Discussion 
The calculation of the previous section raises several problems. Thus the trans- 

verse instabilities invoked can be shown to occur in a plasma containing no 
external fields, but there may be situations where such fields are necessarily 
introduced. Consider, for example, the determination of the structure of a 
collision-free shock in which the entropy gain is due to these instabilities. 
Unstable waves can arise among the electrons or the protons. But the proton 
instability takes much longer to develop than that of the electrons, and so, as in 
a number of other plasma phenomena, the energy dissipation occurs essentially 
among the electrons, which are slowed down first. The protons are then dragged 
back by electrostatic forces. Thus, in finding the structure of the shock, one must 
remember that the electron instability needs to be maintained in the presence of 
an electrostatic field. In  the downstream part of the structure there will also be 
magnetic fields present, produced by the unstable waves further upstream, and 
swept down from there. To know how long these fields persist one should find 
out what happens to the unstable waves at  finite amplitude. 

Lastly we expect that the final effect of a transverse instability is to make 
the velocity distribution of the electrons locally isotropic. To check this one needs, 
once again, to study finite amplitude effects. But even without such a study it is 
clear that there are some simple cases in which the required re-arrangement of 
velocities is not straightforward. For example, let the local mean velocity be 
given by 

where 5 > 0. This describes a solenoidal shear flow parallel to the (x, 2)-plane. 
The resultant velocity distribution is locally ellipsoidal, and has its shortest 
axis parallel to Ox and its longest axis parallel to 02. The most unstable plasma 
wave then has its wave-normal parallel to Ox, its vector potential parallel to  0 2  

and its magnetic field parallel to Oy. The forces on the charged particles due to 
such a wave all necessarily act parallel to the (x, x)-plane. No complete redistri- 
bution of velocities can occur on account of this wave alone. In  fact after the 
velocities have been redistributed in the (x, 2)-plane a further wave must become 
unstable, with a wave vector normal to that plane, and must complete the 
redistribution. 

In  both the collision free shock and the shear flow it seems that the physical 
details describing the plasma waves are likely to be rather complicated. 

u = $<(X+Z), v = 0, w = -&Jx+z) 
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